Automatic Spoofing Detection Using Deep Learning
Deep fakes stand out to be the most dangerous side effects of Artificial Intelligence. AI assists to produce voice cloning of any entity which is very arduous to categorize whether it’s fake or real. The aim of the research is to impart a spoofing detection system to an automatic speaker verification (ASV) system that can perceive false voices efficiently. The goal is to perceive the unapparent audio elements with maximum precision and to develop a model that is proficient in automatically extracting audio features by utilizing the ASVspoof 2019 dataset. Hence, the proposed ML-DL SafetyNet model is designed that delicately differentiate ASVspoof 2019 dataset voice speeches into fake or bonafide. ASVspoof 2019 dataset is characterized into two segments LA and PA. The ML-DL SafetyNet model is centred on two unique processes; deep learning and machine learning classifiers. Both techniques executed strong performance by achieving an accuracy of 90%.
-
(1) Muhammad Nafees
MSc, Department of Data Science, University of Engineering and Technology, Taxila, Punjab, Pakistan.
(2) Abid Rauf
MSc, Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan.
(3) Rabbia Mahum
MS, Department of Computer Science, University of Engineering and Technology, Taxila, Punjab, Pakistan.
- Almutairi, Z.,& H. Elgibreen(2023). “Detecting Fake Audio of Arabic Speakers Using Self-Supervised Deep Learning,†IEEE Access, 1, https://doi.org/10.1109/ACCESS.2023.3286864
- Almutairi, Z.,& H. Elgibreen(2023). “Detecting Fake Audio of Arabic Speakers Using Self-Supervised Deep Learning,†IEEE Access, 1, https://doi.org/10.1109/ACCESS.2023.3286864
- Alzantot, M., Wang, Z.,&B. Srivastava, (2019)“Deep residual neural networks for audio spoofing detection,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 1078– 1082. https://doi.org/10.21437/Interspeech.2019-3174
- Alzantot, M., Wang, Z.,&B. Srivastava, (2019)“Deep residual neural networks for audio spoofing detection,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 1078– 1082. https://doi.org/10.21437/Interspeech.2019-3174
- Balamurali, B. T. Lin, K. E. S. Lui, J. M. Chen, & D. (2019). Herremans, “Toward robust audio spoofing detection: A detailed comparison of traditional and learned features,†IEEE Access, 7, 84229–84241, https://doi.org/10.1109/ACCESS.2019.2923806
- Balamurali, B. T. Lin, K. E. S. Lui, J. M. Chen, & D. (2019). Herremans, “Toward robust audio spoofing detection: A detailed comparison of traditional and learned features,†IEEE Access, 7, 84229–84241, https://doi.org/10.1109/ACCESS.2019.2923806
- Columbia,B.( 2021). “A Capsule Network Based Approach for Detection of Audio Spoofing Attacks 1. Key Lab of Information Security, School of Computer Science and Engineering, Sun Yat-Sen University, 2. Alibaba Group, Hangzhou, China,†6359–6363,
- Columbia,B.( 2021). “A Capsule Network Based Approach for Detection of Audio Spoofing Attacks 1. Key Lab of Information Security, School of Computer Science and Engineering, Sun Yat-Sen University, 2. Alibaba Group, Hangzhou, China,†6359–6363,
- Delgado,H. et al., (2021). “ASVspoof 2021: Automatic Speaker Verification Spoofing and Countermeasures Challenge Evaluation Plan,†http://arxiv.org/abs/2109.00535
- Delgado,H. et al., (2021). “ASVspoof 2021: Automatic Speaker Verification Spoofing and Countermeasures Challenge Evaluation Plan,†http://arxiv.org/abs/2109.00535
- Dua, M. C. Jain, & Kumar, S.(2022). “LSTM and CNN based ensemble approach for spoof detection task in automatic speaker verification systems,†J. Ambient Intell. Humaniz.Comput, 13(4), 1985–2000, https://doi.org/10.1007/s12652-021-02960-0
- Dua, M. C. Jain, & Kumar, S.(2022). “LSTM and CNN based ensemble approach for spoof detection task in automatic speaker verification systems,†J. Ambient Intell. Humaniz.Comput, 13(4), 1985–2000, https://doi.org/10.1007/s12652-021-02960-0
- Gao, Y.Vuong, M. Elyasi, G. Bharaj, & Singh, R.(2021). “Generalized Spoofing Detection Inspired from Audio Generation Artifacts,†http://arxiv.org/abs/2104.04111
- Gao, Y.Vuong, M. Elyasi, G. Bharaj, & Singh, R.(2021). “Generalized Spoofing Detection Inspired from Audio Generation Artifacts,†http://arxiv.org/abs/2104.04111
- Gomez-alanisA. et al. (2017). “On Joint Optimization of Automatic Speaker Verification and Anti-spoofing in the Embedding Space,†i, 1–15
- Gomez-alanisA. et al. (2017). “On Joint Optimization of Automatic Speaker Verification and Anti-spoofing in the Embedding Space,†i, 1–15
- Hamza, A. et al. (2022). “Deepfake Audio Detection via MFCC features using Machine Learning,†IEEE Access, 10, 134018–134028, https://doi.org/10.1109/ACCESS.2022.3231480
- Hamza, A. et al. (2022). “Deepfake Audio Detection via MFCC features using Machine Learning,†IEEE Access, 10, 134018–134028, https://doi.org/10.1109/ACCESS.2022.3231480
- Ismail, A. M. Elpeltagy, M. S. Zaki., & K. Eldahshan, “A New Deep Learning-Based Methodology for Video Deepfake,†1–1
- Ismail, A. M. Elpeltagy, M. S. Zaki., & K. Eldahshan, “A New Deep Learning-Based Methodology for Video Deepfake,†1–1
- Kinnunen, T. et al. (2017). “The ASVspoof 2017 challenge: Assessing the limits of replay spoofing attack detection,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 2–6. https://doi.org/10.21437/Interspeech.2017-1111
- Kinnunen, T. et al. (2017). “The ASVspoof 2017 challenge: Assessing the limits of replay spoofing attack detection,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 2–6. https://doi.org/10.21437/Interspeech.2017-1111
- Kinnunen, T. M. Todisco, N. Evans, J. Yamagishi., & K. A. Lee, (2017). “The ASVspoof 2017 Challenge : Assessing the Limits of Replay Spoofing Attack Detection National Institute of Informatics, Japan,†i, 2–6
- Kinnunen, T. M. Todisco, N. Evans, J. Yamagishi., & K. A. Lee, (2017). “The ASVspoof 2017 Challenge : Assessing the Limits of Replay Spoofing Attack Detection National Institute of Informatics, Japan,†i, 2–6
- Lavrentyeva, G. S. Novoselov, E. Malykh, A. Kozlov, O. Kudashev., &Shchemelinin, V. (2017). “Audio replay attack detection with deep learning frameworks,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 82– 86. https://doi.org/10.21437/Interspeech.2017-360
- Lavrentyeva, G. S. Novoselov, E. Malykh, A. Kozlov, O. Kudashev., &Shchemelinin, V. (2017). “Audio replay attack detection with deep learning frameworks,†in Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech, 82– 86. https://doi.org/10.21437/Interspeech.2017-360
- Lorenzo-Trueba,J. et al.(2018). “The Voice Conversion Challenge 2018: Promoting Development of Parallel and Nonparallel Methods,†http://arxiv.org/abs/1804.04262
- Lorenzo-Trueba,J. et al.(2018). “The Voice Conversion Challenge 2018: Promoting Development of Parallel and Nonparallel Methods,†http://arxiv.org/abs/1804.04262
- Mcuba, M. A. Singh, R. A. Ikuesan., & H. Venter, (2022). “The Effect of Deep Learning Methods on Deepfake Audio Detection for Digital Investigation,†Procedia Comput. Sci., 219, 211– 219. https://doi.org/10.1016/j.procs.2023.01.283
- Mcuba, M. A. Singh, R. A. Ikuesan., & H. Venter, (2022). “The Effect of Deep Learning Methods on Deepfake Audio Detection for Digital Investigation,†Procedia Comput. Sci., 219, 211– 219. https://doi.org/10.1016/j.procs.2023.01.283
- Todisco, M. et al.(2019). “ASVSpoof Future horizons in spoofed and fake audio detection,†Proc. Annu. Conf. Int. Speech Commun. Assoc. Interspeech, 1008–1012, https://doi.org/10.21437/Interspeech.2019-2249
- Todisco, M. et al.(2019). “ASVSpoof Future horizons in spoofed and fake audio detection,†Proc. Annu. Conf. Int. Speech Commun. Assoc. Interspeech, 1008–1012, https://doi.org/10.21437/Interspeech.2019-2249
- Wang, Z. S. Cui, X. Kang, W. Sun., & Z. Li, (2020). “Densely Connected Convolutional Network for Audio Spoofing Detection,†1352–1360
- Wang, Z. S. Cui, X. Kang, W. Sun., & Z. Li, (2020). “Densely Connected Convolutional Network for Audio Spoofing Detection,†1352–1360
- Wenger, E. M. Bronckers, C. Cianfarani, J. Cryan, A. Sha., & B. Y. Zhao, (2021). “Hello, It’s Meâ€: Deep Learning-based Speech Synthesis A acks in the Real World,†235–251.
- Wenger, E. M. Bronckers, C. Cianfarani, J. Cryan, A. Sha., & B. Y. Zhao, (2021). “Hello, It’s Meâ€: Deep Learning-based Speech Synthesis A acks in the Real World,†235–251.
- Yang, Y. et al.(2019). “The SJTU Robust Anti- spoofing System for the ASVspoof 2019 Challenge,†1038–1042, https://doi.org/10.21437/Interspeech.2019-2170
- Yang, Y. et al.(2019). “The SJTU Robust Anti- spoofing System for the ASVspoof 2019 Challenge,†1038–1042, https://doi.org/10.21437/Interspeech.2019-2170
- Yi, J. et al.(2021). “Half-truth: A partially fake audio detection dataset,†Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, 4, 2683–2687, https://doi.org/10.21437/Interspeech.2021-930
- Yi, J. et al.(2021). “Half-truth: A partially fake audio detection dataset,†Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, 4, 2683–2687, https://doi.org/10.21437/Interspeech.2021-930
- Yi, J et al.(2022). “ADD 2022: the First Audio Deep Synthesis Detection Challenge,†http://arxiv.org/abs/2202.08433
- Yi, J et al.(2022). “ADD 2022: the First Audio Deep Synthesis Detection Challenge,†http://arxiv.org/abs/2202.08433
- Yu, Y. et al.(2020). “RMAF : Relu-Memristor-Like Activation Function for Deep Learning,†IEEE Access, 8, 72727–72741, https://doi.org/10.1109/ACCESS.2020.2987829
- Yu, Y. et al.(2020). “RMAF : Relu-Memristor-Like Activation Function for Deep Learning,†IEEE Access, 8, 72727–72741, https://doi.org/10.1109/ACCESS.2020.2987829
Cite this article
-
APA : Nafees, M., Rauf, A., & Mahum, R. (2024). Automatic Spoofing Detection Using Deep Learning. Global Social Sciences Review, IX(I), 110-131. https://doi.org/10.31703/gssr.2024(IX-I).11
-
CHICAGO : Nafees, Muhammad, Abid Rauf, and Rabbia Mahum. 2024. "Automatic Spoofing Detection Using Deep Learning." Global Social Sciences Review, IX (I): 110-131 doi: 10.31703/gssr.2024(IX-I).11
-
HARVARD : NAFEES, M., RAUF, A. & MAHUM, R. 2024. Automatic Spoofing Detection Using Deep Learning. Global Social Sciences Review, IX, 110-131.
-
MHRA : Nafees, Muhammad, Abid Rauf, and Rabbia Mahum. 2024. "Automatic Spoofing Detection Using Deep Learning." Global Social Sciences Review, IX: 110-131
-
MLA : Nafees, Muhammad, Abid Rauf, and Rabbia Mahum. "Automatic Spoofing Detection Using Deep Learning." Global Social Sciences Review, IX.I (2024): 110-131 Print.
-
OXFORD : Nafees, Muhammad, Rauf, Abid, and Mahum, Rabbia (2024), "Automatic Spoofing Detection Using Deep Learning", Global Social Sciences Review, IX (I), 110-131
-
TURABIAN : Nafees, Muhammad, Abid Rauf, and Rabbia Mahum. "Automatic Spoofing Detection Using Deep Learning." Global Social Sciences Review IX, no. I (2024): 110-131. https://doi.org/10.31703/gssr.2024(IX-I).11